3.334 \(\int \frac{x}{(d+e x^2) \sqrt{a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=86 \[ \frac{\tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 \sqrt{a e^2-b d e+c d^2}} \]

[Out]

ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])]/(2*Sqrt[c*d
^2 - b*d*e + a*e^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0836072, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {1247, 724, 206} \[ \frac{\tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 \sqrt{a e^2-b d e+c d^2}} \]

Antiderivative was successfully verified.

[In]

Int[x/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])]/(2*Sqrt[c*d
^2 - b*d*e + a*e^2])

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{\left (d+e x^2\right ) \sqrt{a+b x^2+c x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )\\ &=-\operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x^2}{\sqrt{a+b x^2+c x^4}}\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{-b d+2 a e-(2 c d-b e) x^2}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{c d^2-b d e+a e^2}}\\ \end{align*}

Mathematica [A]  time = 0.0194494, size = 87, normalized size = 1.01 \[ -\frac{\tanh ^{-1}\left (\frac{2 a e-b d+b e x^2-2 c d x^2}{2 \sqrt{a+b x^2+c x^4} \sqrt{e (a e-b d)+c d^2}}\right )}{2 \sqrt{e (a e-b d)+c d^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x^2 + b*e*x^2)/(2*Sqrt[c*d^2 + e*(-(b*d) + a*e)]*Sqrt[a + b*x^2 + c*x^4])]/(2
*Sqrt[c*d^2 + e*(-(b*d) + a*e)])

________________________________________________________________________________________

Maple [B]  time = 0.006, size = 165, normalized size = 1.9 \begin{align*} -{\frac{1}{2\,e}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}+{\frac{be-2\,cd}{e} \left ({x}^{2}+{\frac{d}{e}} \right ) }+2\,\sqrt{{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}}\sqrt{c \left ({x}^{2}+{\frac{d}{e}} \right ) ^{2}+{\frac{be-2\,cd}{e} \left ({x}^{2}+{\frac{d}{e}} \right ) }+{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}} \right ) \left ({x}^{2}+{\frac{d}{e}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

-1/2/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c
*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{c x^{4} + b x^{2} + a}{\left (e x^{2} + d\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(c*x^4 + b*x^2 + a)*(e*x^2 + d)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.79745, size = 768, normalized size = 8.93 \begin{align*} \left [\frac{\log \left (-\frac{{\left (8 \, c^{2} d^{2} - 8 \, b c d e +{\left (b^{2} + 4 \, a c\right )} e^{2}\right )} x^{4} - 8 \, a b d e + 8 \, a^{2} e^{2} +{\left (b^{2} + 4 \, a c\right )} d^{2} + 2 \,{\left (4 \, b c d^{2} + 4 \, a b e^{2} -{\left (3 \, b^{2} + 4 \, a c\right )} d e\right )} x^{2} + 4 \, \sqrt{c x^{4} + b x^{2} + a} \sqrt{c d^{2} - b d e + a e^{2}}{\left ({\left (2 \, c d - b e\right )} x^{2} + b d - 2 \, a e\right )}}{e^{2} x^{4} + 2 \, d e x^{2} + d^{2}}\right )}{4 \, \sqrt{c d^{2} - b d e + a e^{2}}}, \frac{\sqrt{-c d^{2} + b d e - a e^{2}} \arctan \left (-\frac{\sqrt{c x^{4} + b x^{2} + a} \sqrt{-c d^{2} + b d e - a e^{2}}{\left ({\left (2 \, c d - b e\right )} x^{2} + b d - 2 \, a e\right )}}{2 \,{\left ({\left (c^{2} d^{2} - b c d e + a c e^{2}\right )} x^{4} + a c d^{2} - a b d e + a^{2} e^{2} +{\left (b c d^{2} - b^{2} d e + a b e^{2}\right )} x^{2}\right )}}\right )}{2 \,{\left (c d^{2} - b d e + a e^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/4*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*
b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d
 - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2))/sqrt(c*d^2 - b*d*e + a*e^2), 1/2*sqrt(-c*d^2 + b*d*e
- a*e^2)*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((
c^2*d^2 - b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2))/(c*d^2 -
b*d*e + a*e^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\left (d + e x^{2}\right ) \sqrt{a + b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x**2+d)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(x/((d + e*x**2)*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [A]  time = 1.13953, size = 101, normalized size = 1.17 \begin{align*} \frac{\arctan \left (-\frac{{\left (\sqrt{c} x^{2} - \sqrt{c x^{4} + b x^{2} + a}\right )} e + \sqrt{c} d}{\sqrt{-c d^{2} + b d e - a e^{2}}}\right )}{\sqrt{-c d^{2} + b d e - a e^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

arctan(-((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 + b*d*e - a*e^2))/sqrt(-c*d^2 + b*
d*e - a*e^2)